A232983 The Gauss factorial n_7!.
1, 1, 2, 6, 24, 120, 720, 720, 5760, 51840, 518400, 5702400, 68428800, 889574400, 889574400, 13343616000, 213497856000, 3629463552000, 65330343936000, 1241276534784000, 24825530695680000, 24825530695680000, 546161675304960000, 12561718532014080000, 301481244768337920000, 7537031119208448000000
Offset: 0
Keywords
Links
- J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.
- J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.
Crossrefs
Programs
-
Magma
k:=7; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
-
Maple
Gf:=proc(N,n) local j,k; k:=1; for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end; f:=n->[seq(Gf(N,n),N=0..40)]; f(7);
Comments