A232984 The Gauss factorial n_10!.
1, 1, 1, 3, 3, 3, 3, 21, 21, 189, 189, 2079, 2079, 27027, 27027, 27027, 27027, 459459, 459459, 8729721, 8729721, 183324141, 183324141, 4216455243, 4216455243, 4216455243, 4216455243, 113844291561, 113844291561, 3301484455269, 3301484455269, 102346018113339, 102346018113339, 3377418597740187
Offset: 0
Keywords
Links
- J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.
- J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.
Crossrefs
Programs
-
Magma
k:=10; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..40]]; // Bruno Berselli, Dec 10 2013
-
Maple
Gf:=proc(N,n) local j,k; k:=1; for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end; f:=n->[seq(Gf(N,n),N=0..40)]; f(10);
Comments