cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232985 The Gauss factorial n_11!.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 3628800, 43545600, 566092800, 7925299200, 118879488000, 1902071808000, 32335220736000, 582033973248000, 11058645491712000, 221172909834240000, 4644631106519040000, 4644631106519040000, 106826515449937920000, 2563836370798510080000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=11; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(11);