A233006 Expansion of psi(x) / f(-x^6) in powers of x where psi(), f() are Ramanujan theta functions.
1, 1, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 3, 2, 0, 3, 1, 0, 5, 3, 0, 5, 2, 0, 8, 5, 0, 8, 4, 0, 12, 7, 0, 12, 6, 0, 19, 11, 0, 19, 9, 0, 27, 15, 0, 28, 14, 0, 39, 22, 0, 41, 20, 0, 55, 31, 0, 58, 29, 0, 77, 43, 0, 82, 41, 0, 106, 58, 0, 113, 57, 0, 145, 80, 0, 156
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^3 + 2*x^6 + x^7 + x^9 + x^10 + 3*x^12 + 2*x^13 + 3*x^15 + ... G.f. = q + q^9 + q^25 + 2*q^49 + q^57 + q^73 + q^81 + 3*q^97 + 2*q^105 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8) QPochhammer[ x^6]), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};
Formula
Expansion of q^(-1/8) * eta(q^2)^2 / (eta(q) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 1, -1, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = (3/2)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A070047.
G.f.: Product_{k>0} (1 + x^k) / (1 + x^(2*k) + x^(4*k)).
Comments