A233010 In balanced ternary notation, either a palindrome or becomes a palindrome if trailing 0's are omitted.
0, 1, 3, 4, 7, 9, 10, 12, 13, 16, 21, 27, 28, 30, 36, 39, 40, 43, 48, 52, 61, 63, 73, 81, 82, 84, 90, 91, 103, 108, 112, 117, 120, 121, 124, 129, 144, 156, 160, 183, 189, 196, 208, 219, 243, 244, 246, 252, 270, 273, 280, 292, 309, 324, 328, 336, 351, 360, 363
Offset: 1
Examples
10 is included since in balanced ternary notation 10 = (101)_bt is a palindrome; 144 is included since 144 = (1TT100)_bt, where we use T to represent -1. When trailing zeros removed, 1TT1 is a palindrome.
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
BTDigits[m_Integer, g_] := Module[{n = m, d, sign, t = g}, If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n]; d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++]; While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign; t = BTDigits[sign*(n - 3^(d - 1)), t]]; t]; BTpaleQ[n_Integer] := Module[{t, trim = n/3^IntegerExponent[n, 3]}, t = BTDigits[trim, {0}]; t == Reverse[t]]; Select[Range[0, 363], BTpaleQ[#] &]
Comments