cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233155 T(n,k) = Number of n X k 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

3, 6, 9, 12, 24, 27, 24, 72, 96, 81, 48, 216, 432, 384, 243, 96, 648, 1944, 2592, 1536, 729, 192, 1944, 8856, 17496, 15552, 6144, 2187, 384, 5832, 40392, 121176, 157464, 93312, 24576, 6561, 768, 17496, 184248, 842616, 1658232, 1417176, 559872, 98304, 19683
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Table starts
.....3.......6........12.........24...........48.............96
.....9......24........72........216..........648...........1944
....27......96.......432.......1944.........8856..........40392
....81.....384......2592......17496.......121176.........842616
...243....1536.....15552.....157464......1658232.......17587584
...729....6144.....93312....1417176.....22692312......367125912
..2187...24576....559872...12754584....310536504.....7663517136
..6561...98304...3359232..114791256...4249585944...159971190624
.19683..393216..20155392.1033121304..58154132088..3339300422232
.59049.1572864.120932352.9298091736.795819434328.69705848287656

Examples

			Some solutions for n=4, k=4
..1..2..2..1....1..2..2..1....0..0..0..0....1..2..1..0....2..1..0..1
..2..1..2..2....2..1..0..1....1..0..1..2....1..0..0..0....0..1..0..1
..2..1..2..1....2..1..0..1....1..0..1..0....0..0..1..0....2..1..2..1
..0..1..2..2....0..1..0..0....1..0..0..1....0..0..0..0....2..1..0..0
		

Crossrefs

Column 1 is A000244.
Column 2 is A002023(n-1).
Column 3 is 2*A000400.
Column 4 is 3*A055275.
Row 1 is A003945.
Row 2 is A005051(n-1) for n>1.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1).
k=2: a(n) = 4*a(n-1).
k=3: a(n) = 6*a(n-1).
k=4: a(n) = 9*a(n-1).
k=5: a(n) = 15*a(n-1) -18*a(n-2).
k=6: a(n) = 25*a(n-1) -90*a(n-2) +81*a(n-3).
k=7: a(n) = 42*a(n-1) -351*a(n-2) +972*a(n-3) -810*a(n-4).
Empirical for row n:
n=1: a(n) = 2*a(n-1).
n=2: a(n) = 3*a(n-1) for n>2.
n=3: a(n) = 5*a(n-1) -2*a(n-2) for n>4.
n=4: a(n) = 9*a(n-1) -15*a(n-2) +6*a(n-3) for n>7.
n=5: [order 7] for n>11.
n=6: [order 9] for n>15.
n=7: [order 27] for n>33.