cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233204 Number of ways to write n = k + m with 0 < k < m such that 2^k * prime(m) + 3 is prime.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 3, 1, 4, 3, 2, 2, 2, 4, 3, 2, 6, 3, 2, 1, 8, 1, 2, 2, 4, 7, 2, 5, 6, 8, 5, 4, 4, 8, 3, 5, 2, 7, 5, 8, 5, 3, 4, 4, 4, 8, 6, 2, 4, 3, 7, 7, 3, 4, 7, 5, 3, 4, 6, 8, 4, 2, 6, 6, 4, 7, 7, 5, 7, 7, 6, 6, 2, 7, 8, 7, 7, 5, 11, 3, 4, 8, 2, 7, 8, 6, 9, 7, 6, 10, 11, 4, 5, 8, 4, 8, 8, 6, 7, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 05 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3. Also, any integer n > 2 can be written as k + m (0 < k <= m) with 2^k*prime(m) - 3 prime.
(ii) Any integer n > 6 can be written as k + m (0 < k < m) with prime(k) + 6 and prime(m) + 6 both prime. Each integer n > 4 can be written as k + m (0 < k < m) with prime(k) + 2 and prime(m) + 6 both prime. Also, for every integer n > 3 not among 11, 21, 32, 49, 171, there is a positive integer k < n with prime(k) + 2 and prime(n-k) + 2 both prime.

Crossrefs

Programs

  • Maple
    a(6) = 1 since 6 = 2 + 4 with 2^2*prime(4) + 3 = 4*7 + 3 = 31 prime.
    a(22) = 1 since 22 = 1 + 21 with 2^1*prime(21) + 3 = 2*73 + 3 = 149 prime.
  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2^k*Prime[n-k]+3],1,0],{k,1,(n-1)/2}]
    Table[a[n],{n,1,100}]