A233249 a(1)=0; for k >= 1, let prime(k) map to 10...0 with k-1 zeros and let prime(k)*prime(m) map to the concatenation in binary of 2^(k-1) and 2^(m-1). For n >= 2, let the prime power factorization of n be mapped to r(n). a(n) is the term in A114994 which is c-equivalent to r(n) (see there our comment).
0, 1, 2, 3, 4, 5, 8, 7, 10, 9, 16, 11, 32, 17, 18, 15, 64, 21, 128, 19, 34, 33, 256, 23, 36, 65, 42, 35, 512, 37, 1024, 31, 66, 129, 68, 43, 2048, 257, 130, 39, 4096, 69, 8192, 67, 74, 513, 16384, 47, 136, 73, 258, 131, 32768, 85, 132, 71, 514, 1025, 65536, 75
Offset: 1
Examples
n=10=2*5 is mapped to (1)(100)~(100)(1). Since 9 is in A114994, then a(10)=9. From _Gus Wiseman_, Apr 02 2020: (Start) The sequence together with the corresponding compositions begins: 0: () 128: (8) 2048: (12) 1: (1) 19: (3,1,1) 257: (8,1) 2: (2) 34: (4,2) 130: (6,2) 3: (1,1) 33: (5,1) 39: (3,1,1,1) 4: (3) 256: (9) 4096: (13) 5: (2,1) 23: (2,1,1,1) 69: (4,2,1) 8: (4) 36: (3,3) 8192: (14) 7: (1,1,1) 65: (6,1) 67: (5,1,1) 10: (2,2) 42: (2,2,2) 74: (3,2,2) 9: (3,1) 35: (4,1,1) 513: (9,1) 16: (5) 512: (10) 16384: (15) 11: (2,1,1) 37: (3,2,1) 47: (2,1,1,1,1) 32: (6) 1024: (11) 136: (4,4) 17: (4,1) 31: (1,1,1,1,1) 73: (3,3,1) 18: (3,2) 66: (5,2) 258: (7,2) 15: (1,1,1,1) 129: (7,1) 131: (6,1,1) 64: (7) 68: (4,3) 32768: (16) 21: (2,2,1) 43: (2,2,1,1) 85: (2,2,2,1) For example, the Heinz number of (2,2,1) is 18, and the 21st composition in standard order is (2,2,1), so a(18) = 21. (End)
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..2500
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Total[2^Accumulate[primeMS[n]]]/2,{n,100}] (* Gus Wiseman, Apr 02 2020 *)
Formula
Extensions
More terms from Peter J. C. Moses, Dec 07 2013
Comments