A233256 T(n,k)=Number of nXk 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabelled 6-colorings with no clashing color pairs).
1, 1, 3, 3, 10, 11, 10, 104, 136, 48, 36, 1184, 4672, 2080, 236, 136, 13952, 166400, 221696, 32896, 1248, 528, 166400, 6049792, 23896064, 10620928, 524800, 6896, 2080, 1992704, 220626944, 2647261184, 3439984640, 509640704, 8390656, 39168, 8256
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..0..2....0..1..0..2....0..1..2..4....0..1..0..2....0..1..2..4 ..5..3..5..2....2..1..0..4....3..4..2..4....3..4..0..4....2..0..3..1 ..4..3..1..5....5..2..0..3....3..1..5..4....3..1..5..1....4..0..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..240
Formula
Empirical for column k:
k=1: a(n) = 12*a(n-1) -44*a(n-2) +48*a(n-3)
k=2: a(n) = 20*a(n-1) -64*a(n-2)
k=3: a(n) = 56*a(n-1) -384*a(n-2)
k=4: a(n) = 160*a(n-1) -2304*a(n-2)
k=5: a(n) = 512*a(n-1) -33792*a(n-2) +589824*a(n-3)
k=6: a(n) = 1664*a(n-1) -471040*a(n-2) +44826624*a(n-3) -1358954496*a(n-4)
k=7: [order 5]
Empirical for row n:
n=1: a(n) = 6*a(n-1) -8*a(n-2) for n>3
n=2: a(n) = 16*a(n-1) -48*a(n-2) for n>3
n=3: a(n) = 48*a(n-1) -448*a(n-2) +1024*a(n-3) for n>5
n=4: a(n) = 160*a(n-1) -6144*a(n-2) +86016*a(n-3) -393216*a(n-4) for n>8
n=5: [order 7] for n>11
n=6: [order 10] for n>16
n=7: [order 28] for n>34
Comments