cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233265 Prime(k), where k is such that (1 + Sum_{j=1..k} prime(j)^12) / k is an integer.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 61, 71, 73, 89, 101, 103, 107, 113, 149, 151, 167, 173, 181, 197, 199, 223, 239, 251, 263, 281, 307, 313, 317, 349, 359, 397, 409, 433, 449, 463, 467, 541, 569, 571, 613, 643, 659, 701, 733, 787, 809
Offset: 1

Views

Author

Robert Price, Dec 06 2013

Keywords

Comments

a(1171) > 661876608760109. - Bruce Garner, Jun 06 2021

Examples

			a(4) = 7, because 7 is the 4th prime and (1 + Sum_{i=1..4} prime(i)^12) / 4 = 14085963364/4 = 3521490841 which is an integer.
		

Crossrefs

Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).

Programs

  • Maple
    A233265:=n->if type((1+add(ithprime(i)^12, i=1..n))/n, integer) then ithprime(n); fi; seq(A233265(k),k=1..200); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    t = {}; sm = 1; Do[sm = sm + Prime[n]^12; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
    Prime[#]&/@(Flatten[Position[#[[1]]/#[[2]]&/@With[{nn=200},Thread[ {(Rest[ FoldList[ Plus,0,Prime[Range[nn]]^12]])+1,Range[nn]}]],?IntegerQ]]) (* _Harvey P. Dale, Nov 19 2018 *)
  • PARI
    is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^12); s==0 \\ Charles R Greathouse IV, Nov 30 2013