cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233272 a(n) = n + 1 + number of nonleading zeros in binary representation of n (A080791).

Original entry on oeis.org

1, 2, 4, 4, 7, 7, 8, 8, 12, 12, 13, 13, 15, 15, 16, 16, 21, 21, 22, 22, 24, 24, 25, 25, 28, 28, 29, 29, 31, 31, 32, 32, 38, 38, 39, 39, 41, 41, 42, 42, 45, 45, 46, 46, 48, 48, 49, 49, 53, 53, 54, 54, 56, 56, 57, 57, 60, 60, 61, 61, 63, 63, 64, 64, 71, 71, 72
Offset: 0

Views

Author

Antti Karttunen, Dec 12 2013

Keywords

Comments

From Antti Karttunen, Jan 30 2022: (Start)
Write n in binary: 1ab..xyz, then a(n) = (1+1ab..xy) + (1+1ab..x) + ... + (1+1ab) + (1+1a) + (1+1) + (1+0) + 1. This method was found by LODA miner, see the assembly program at C. Krause link.
Proof: Compare to a similar formula given for A011371, with a(n) = a(floor(n/2)) + floor(n/2) to the new formula for this sequence which is a(n) = 1 + a(floor(n/2)) + floor(n/2), for n > 0 and a(0) = 1. It is easy to see that the difference between these, a(n) - A011371(n) = 1+A070939(n), for n > 0. As A011371(n) = n minus (number of 1's in binary expansion of n), then a(n) = 1 + (number of digits in binary expansion of n) + (n minus number of 1's in binary expansion of n) = 1 + n + (number of nonleading 0's in binary expansion of n), which indeed is the definition of this sequence.
(End)

Crossrefs

Programs

  • Mathematica
    DigitCount[#, 2, 0] + # + 1 & [Range[0, 100]] (* Paolo Xausa, Mar 01 2024 *)
  • PARI
    A233272(n) = { my(s=1); while(n, n>>=1; s+=(1+n)); (s); }; \\ (After a LODA-assembly program found by a miner) - Antti Karttunen, Jan 30 2022
    
  • Scheme
    (define (A233272 n) (+ 1 n (A080791 n)))
    ;; Alternatively:
    (define (A233272 n) (if (zero? n) 1 (+ n (A000120 (A054429 n)))))

Formula

a(n) = n + A080791(n) + 1.
For all n>=1, a(n) = n + A000120(A054429(n)).
a(0) = 1; for n > 1, a(n) = 1 + floor(n/2) + a(floor(n/2)). - (Found by LODA miner, see comments) - Antti Karttunen, Jan 30 2022