cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233295 Riordan array ((1+x)/(1-x)^3, 2*x/(1-x)).

Original entry on oeis.org

1, 4, 2, 9, 10, 4, 16, 28, 24, 8, 25, 60, 80, 56, 16, 36, 110, 200, 216, 128, 32, 49, 182, 420, 616, 560, 288, 64, 64, 280, 784, 1456, 1792, 1408, 640, 128, 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256, 100, 570, 2160, 5712, 10752, 14400, 13440, 8320, 3072, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 07 2013

Keywords

Comments

Subtriangle of the triangle in A208532.
Row sums are A060188(n+2).
Diagonal sums are A000295(n+2)=A125128(n+1)=A130103(n+2).

Examples

			Triangle begins :
1
4, 2
9, 10, 4
16, 28, 24, 8
25, 60, 80, 56, 16
36, 110, 200, 216, 128, 32
49, 182, 420, 616, 560, 288, 64
64, 280, 784, 1456, 1792, 1408, 640, 128
81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
100, 570, 2160, 5712, 10752, 14400, 13440, 8320, 3072, 512
		

Crossrefs

Cf. Columns: A000290, A006331, A112742.
Cf. Diagonal: A000079.

Formula

G.f. for the column k: 2^k*(1+x)/(1-x)^(k+3).
T(n,k) = 2^k*(binomial(n,k)+3*binomial(n,k+1)+2*binomial(n,k+2)), 0<=k<=n.
T(n,0) = 2*T(n-1,0)-T(n-2,0)+2, T(n,k)=2*T(n-1,k)+2*T(n-1,k-1)-2*T(n-2,k-1)-T(n-2,k) for k>=1, T(0,0)=1, T(1,0)=4, T(1,1)=2, T(n,k)=0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k) = A060188(n+2).
Sum_{k=0..n} T(n,k)*(-1)^k = n+1.
T(n,k) = 2*sum_{j=1..n-k+1} T(n-j,k-1).
T(n,k) = 2^k*A125165(n,k).
T(n,n) = 2^n=A000079(n).
T(n,0) = (n+1)^2=A000290(n+1).
exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(16 + 28*x + 24*x^2/2! + 8*x^3/3!) = 16 + 60*x + 200*x^2/2! + 616*x^3/3! + 1792*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), 2*x/(1 - x) ). Cf. A125165. - Peter Bala, Dec 21 2014