cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233307 a(n) = |{0 < k < n: p(k)^2 + q(n-k)^2 is prime}|, where p(.) is the partition function (A000041) and q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 1, 2, 2, 1, 1, 4, 2, 3, 2, 2, 4, 4, 3, 2, 2, 5, 3, 1, 5, 3, 5, 6, 3, 3, 2, 2, 1, 1, 2, 2, 5, 3, 4, 3, 5, 3, 1, 6, 4, 7, 10, 3, 5, 4, 2, 4, 5, 3, 4, 2, 3, 7, 9, 5, 6, 8, 2, 5, 3, 3, 5, 4, 3, 5, 4, 6, 7, 6, 3, 2, 9, 8, 6, 1, 6, 7, 7, 6, 2, 5, 8, 4, 6, 2, 6, 4, 8, 7, 3, 5, 3, 3, 5, 4, 5, 8, 5, 6, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 07 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Also, for any integer n > 4, p(k)*q(n-k) - 1 is prime for some 0 < k < n/2.
(ii) If n > 9, then prime(k)*p(n-k) + 1 is prime for some 0 < k < n. If n > 2, then prime(k)*q(n-k) - 1 is prime for some 0 < k < n, and also prime(k)*q(n-k) + 1 is prime for some 0 < k < n.
(iii) If n > 11, then prime(k) + p(n-k) is prime for some 0 < k < n. If n > 4, then prime(k) + q(n-k) is prime for some 0 < k < n, and also prime(k)^2 + q(n-k)^2 is prime for some 0 < k < n.

Examples

			a(5) = 1 since 5 = 1 + 4 with p(1)^2 + q(4)^2 = 1^2 + 2^2 = 5 prime.
a(6) = 1 since 6 = 3 + 3 with p(3)^2 + q(3)^2 = 3^2 + 2^2 = 13 prime.
a(19) = 1 since 19 = 3 + 16 with p(3)^2 + q(16)^2 = 3^2 + 32^2 = 1033 prime.
a(28) = 1 since 28 = 3 + 25 with p(3)^2 + q(25)^2 = 3^2 + 142^2 = 20173 prime.
a(29) = 1 since 29 = 6 + 23 with p(6)^2 + q(23)^2 = 11^2 + 104^2 = 10937 prime.
a(38) = 1 since 38 = 1 + 37 with p(1)^2 + q(37)^2 = 1^2 + 760^2 = 577601 prime.
a(75) = 1 since 75 = 13 + 62 with p(13)^2 + q(62)^2 = 101^2 + 13394^2 = 179409437 prime.
a(160) = 1 since 160 = 48 + 112 with p(48)^2 + q(112)^2 = 147273^2 + 1177438^2 = 1408049580373 prime.
a(210) = 1 since 210 = 71 + 139 with p(71)^2 + q(139)^2 = 4697205^2 + 8953856^2 = 102235272080761 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[PartitionsP[k]^2+PartitionsQ[n-k]^2],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]