A233315 Integer areas A of integer-sided cyclic quadrilaterals such that the length of the circumradius is a perfect square.
672, 768, 936, 1200, 10752, 12288, 14976, 19200, 34560, 40560, 48840, 54432, 57120, 62208, 75816, 97200, 138720, 154560, 172032, 196608, 239616, 307200, 420000, 480000, 552960, 585000, 648960, 750000, 781440, 870912, 913920, 995328, 1213056, 1555200, 2219520
Offset: 1
Keywords
Examples
936 is in the sequence because, for (a,b,c,d) = (14,30,40,48) we obtain: s = (14+30+40+48)/2 = 66; A = sqrt((66-14)*(66-30)*(66-40)*(66-48))=936; R = sqrt((14*30+40*48)*(14*40+30*48)*(14*48+30*40))/(4*936) = 93600/3744 = 25 is square.
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
Links
- Wolfram MathWorld, Cyclic Quadrilateral
Crossrefs
Cf. A210250.
Programs
-
Mathematica
nn=500;lst={};Do[s=(a+b+c+d)/2;If[IntegerQ[s],area2=(s-a)*(s-b)*(s-c)*(s-d);If[0
Comments