A233320 Number A(n,k) of tilings of a k X n rectangle using trominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 3, 3, 0, 1, 1, 0, 0, 10, 0, 0, 1, 1, 1, 0, 23, 23, 0, 1, 1, 1, 0, 11, 62, 0, 62, 11, 0, 1, 1, 0, 0, 170, 0, 0, 170, 0, 0, 1, 1, 1, 0, 441, 939, 0, 939, 441, 0, 1, 1, 1, 0, 41, 1173, 0, 8342, 8342, 0, 1173, 41, 0, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 0, 0, 1, 0, 0, 1, ... 1, 0, 0, 3, 0, 0, 11, ... 1, 1, 3, 10, 23, 62, 170, ... 1, 0, 0, 23, 0, 0, 939, ... 1, 0, 0, 62, 0, 0, 8342, ... 1, 1, 11, 170, 939, 8342, 80092, ... 1, 0, 0, 441, 0, 0, 614581, ... 1, 0, 0, 1173, 0, 0, 5271923, ...
Links
- Liang Kai, Antidiagonals n = 0..35, flattened (Antidiagonals 0..28 from Alois P. Heinz)
- Wikipedia, Tromino
Crossrefs
Formula
A(n,k) = 0 <=> n*k mod 3 > 0.
Comments