cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233321 Triangle read by rows: T(n,k) = number of palindromic partitions of n in which the largest part is equal to k, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 1, 1, 3, 0, 1, 0, 1, 1, 4, 2, 3, 0, 1, 0, 1, 1, 2, 4, 1, 2, 0, 1, 0, 1, 1, 5, 3, 5, 1, 2, 0, 1, 0, 1, 1, 2, 6, 2, 4, 0, 2, 0, 1, 0, 1, 1, 6, 5, 8, 2, 4, 0, 2, 0, 1, 0, 1, 1, 3, 8, 3, 7, 1, 3, 0, 2, 0, 1, 0, 1, 1, 7, 7, 11, 4, 7, 1, 3, 0, 2, 0, 1, 0, 1
Offset: 1

Views

Author

L. Edson Jeffery, Dec 10 2013

Keywords

Comments

A partition of n is said to be "palindromic" if its parts can be arranged to form a palindrome in at least one way (cf. A025065).

Examples

			Triangle begins:
1;
1, 1;
1, 0, 1;
1, 2, 0, 1;
1, 1, 1, 0, 1;
1, 3, 1, 1, 0, 1;
1, 1, 3, 0, 1, 0, 1;
1, 4, 2, 3, 0, 1, 0, 1;
1, 2, 4, 1, 2, 0, 1, 0, 1;
1, 5, 3, 5, 1, 2, 0, 1, 0, 1;
1, 2, 6, 2, 4, 0, 2, 0, 1, 0, 1;
...
		

Crossrefs

Cf. A025065 (row sums), A233322.
Cf. A233323-A233324 (palindromic compositions of n).

Programs

  • Mathematica
    (* run this first: *)
    Needs["Combinatorica`"];
    (* run the following in a different cell: *)
    a233321[n_] := {}; Do[Do[a = Partitions[n]; count = 0; Do[If[Max[a[[j]]] == k, x = Permutations[a[[j]]]; Do[If[x[[m]] == Reverse[x[[m]]], count++; Break[]], {m, Length[x]}]], {j, Length[a]}]; AppendTo[a233321[n], count], {k, n}], {n, nmax}]; Table[a233321[n], {n, nmax}](* L. Edson Jeffery, Oct 09 2017 *)
  • PARI
    \\ here V(n,k) is A233322.
    PartitionCount(n,maxpartsize)={my(t=0); forpart(p=n, t++, maxpartsize); t}
    V(n,k)=sum(i=0, (k-n%2)\2, PartitionCount(n\2-i, k));
    T(n,k)=V(n,k)-V(n,k-1);
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 09 2017

Extensions

Corrected row 7 as communicated by Andrew Howroyd. - L. Edson Jeffery, Oct 09 2017