A227930 Primes p such that p-1 and p+1 have an even Hamming weight.
11, 19, 47, 59, 67, 79, 107, 131, 179, 191, 211, 227, 239, 251, 271, 283, 307, 331, 367, 379, 419, 431, 443, 463, 491, 499, 563, 587, 659, 719, 787, 827, 859, 883, 911, 947, 971, 1019, 1039, 1051, 1087, 1123, 1163, 1171, 1187, 1231, 1259, 1279, 1291, 1327, 1423, 1451, 1459, 1471, 1483
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
read("transforms"): isA000069 := proc(n) if wt(n) mod 2 = 1 then true; else false; end if; end proc: for n from 1 do if isprime(n) and not isA000069(n-1) and not isA000069(n+1) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Oct 08 2013 (Scheme, with Antti Karttunen's IntSeq-library, two alternative implementations) (define A227930 (MATCHING-POS 1 1 (lambda (n) (and (even? (A000120 (- n 1))) (even? (A000120 (+ n 1))) (prime? n))))) (define A227930v2 (MATCHING-POS 1 1 (lambda (n) (and (odd? n) (odd? (A000120 n)) (even? (A007814 (+ n 1))) (prime? n))))) # Antti Karttunen, Dec 29 2013
-
Mathematica
Select[Prime[Range[250]], And @@ EvenQ[DigitCount[# + {-1, 1}, 2, 1]] &] (* Amiram Eldar, Jul 24 2023 *)
-
PARI
is(n)=hammingweight(n-1)%2==0 && hammingweight(n+1)%2==0 && isprime(n) \\ Charles R Greathouse IV, Oct 09 2013
Extensions
Entries checked by R. J. Mathar, Oct 08 2013
Comments