A233393 Primes of the form 2^k - 1 + q(m) with k > 0 and m > 0, where q(.) is the strict partition function (A000009).
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 101, 107, 109, 127, 131, 137, 139, 149, 157, 167, 173, 181, 191, 193, 199, 223, 229, 257, 263, 269, 271, 277, 293, 311, 331, 347, 349, 359, 383, 397, 421, 449, 463, 467, 479, 521, 523, 557, 587
Offset: 1
Keywords
Examples
a(1) = 2 since 2^1 - 1 + q(1) = 1 + 1 = 2. a(2) = 3 since 2^1 - 1 + q(3) = 1 + 2 = 3. a(3) = 5 since 2^2 - 1 + q(3) = 3 + 2 = 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..542
- Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
Programs
-
Mathematica
Pow[n_]:=Pow[n]=Mod[n,2]==0&&2^(IntegerExponent[n,2])==n n=0 Do[Do[If[Pow[Prime[m]-PartitionsQ[k]+1], n=n+1;Print[n," ",Prime[m]];Goto[aa]];If[PartitionsQ[k]>=Prime[m],Goto[aa]];Continue,{k,1,2*Prime[m]}]; Label[aa];Continue,{m,1,110}]
Comments