cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233400 Number n such that a2 - n^3 is a triangular number (A000217), where a2 is the least square above n^3.

Original entry on oeis.org

0, 1, 2, 9, 12, 107, 109, 120, 244, 337, 381, 407, 565, 592, 937, 1209, 1224, 1341, 1717, 2032, 2402, 3280, 4957, 5149, 5265, 5644, 7065, 7240, 8181, 8820, 9712, 10732, 11901, 15059, 18300, 19120, 20436, 22672, 24516, 25139, 28044, 28550, 36145, 38221, 66201, 72335, 77100
Offset: 1

Views

Author

Alex Ratushnyak, Dec 09 2013

Keywords

Comments

The sequence of cubes begins: 0, 1, 8, 729, 1728, 1225043, 1295029, 1728000, 14526784, 38272753, 55306341, ...
The sequence of squares begins: 1, 4, 9, 784, 1764, 1225449, 1295044, 1729225, 14531344, 38278969, 55308969, ...
The sequence of roots of these squares begins: 1, 2, 3, 28, 42, 1107, 1138, 1315, 3812, 6187, 7437, 8211, 13430, 14404, 28682, ...

Crossrefs

Programs

  • Maple
    istri:= proc(n) issqr(1+8*n) end proc:
    filter:= proc(n) local a2, t;
      a2:= (floor(sqrt(n^3))+1)^2;
      istri(a2-n^3)
    end proc:
    select(filter, [$0..10^5]); # Robert Israel, Sep 10 2024
  • Python
    def isqrt(a):
        sr = 1 << (int.bit_length(int(a)) >> 1)
        while a < sr*sr:  sr>>=1
        b = sr>>1
        while b:
            s = sr+b
            if a >= s*s:  sr = s
            b>>=1
        return sr
    def isTriangular(a):
        a+=a
        sr = isqrt(a)
        return (a==sr*(sr+1))
    for n in range(77777):
        n3 = n*n*n
        a = isqrt(n3)+1
        if isTriangular(a*a-n3):  print(str(n), end=', ')