cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233401 Numbers k such that k^3 - b2 is a triangular number (A000217), where b2 is the largest square less than k^3.

Original entry on oeis.org

1, 4, 8, 21, 37, 40, 56, 112, 113, 204, 280, 445, 481, 560, 688, 709, 1933, 1945, 3601, 3805, 3861, 4156, 4333, 4365, 7096, 8408, 8516, 11064, 12688, 13609, 13945, 16501, 17080, 18901, 21464, 23125, 27244, 27364, 28141, 45228, 45549, 58321, 60061, 66245, 70585, 78688
Offset: 1

Views

Author

Alex Ratushnyak, Dec 09 2013

Keywords

Comments

The cubes k^3 begin: 1, 64, 512, 9261, 50653, 64000, 175616, 1404928, ...
The squares b2 begin: 0, 49, 484, 9216, 50625, 63504, 175561, 1404225, ...
Their square roots are 0, 7, 22, 96, 225, 252, 419, 1185, 1201, 2913, 4685, 9387, ...

Crossrefs

Programs

  • PARI
    f(k) = if (issquare(k), sqrtint(k-1)^2, sqrtint(k)^2); \\ adapted from A048760
    isok(k) = my(b2 = sqrtint(k^3-1)^2); (k^3-b2) && ispolygonal(k^3-b2, 3); \\ Michel Marcus, Jan 26 2019
  • Python
    from math import isqrt
    def isTriangular(a):
      a+=a
      sr = isqrt(a)
      return (a==sr*(sr+1))
    for n in range(1,79999):
      n3 = n*n*n
      b = isqrt(n3)
      if b*b==n3: b-=1
      if isTriangular(n3-b*b):  print(n, end=', ')