cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233412 c-analog of Euler phi-function: a(n) is number of nonnegative integers not exceeding n and c-prime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 2, 3, 8, 3, 7, 3, 4, 3, 3, 5, 16, 5, 8, 5, 8, 4, 4, 4, 7, 5, 4, 4, 5, 4, 4, 8, 32, 8, 15, 8, 28, 4, 4, 7, 17, 4, 21, 6, 4, 6, 6, 6, 12, 10, 4, 9, 4, 6, 6, 6, 10, 9, 6, 6, 9, 6, 6, 13, 64, 13, 27, 13, 41, 6, 6, 12, 41, 11, 21, 5, 11, 5, 5, 11
Offset: 0

Views

Author

Vladimir Shevelev, Dec 09 2013

Keywords

Comments

Every number in binary is a concatenation of parts of the form 10...0 with k>=0 zeros. For example, 5=(10)(1), 11=(10)(1)(1), 7=(1)(1)(1). We call d>0 is a c-divisor of m, if d consists of some consecutive parts of m which are following in natural order (from the left to the right) in m (cf. comment in A124771). Note that, to d=0 corresponds an empty set of parts. So it is natural to consider 0 as a c-divisor of every m. For example, 3=(1)(1) is a c-divisor of 23, since (1)(1) includes in 23=(10)(1)(1)(1) in a natural order. Analogously, 1,2,5,7,11,23 are c-divisors of 23. But 6=(1)(10) is not a c-divisor of 23.
c-GCD(k,m) is called maximal common c-divisor of k,m. For example, c-GCD(7,11)=3.
Two numbers k,m are called mutually c-prime one to another, if c-GCD(k,m)=0.
In particular, 0 is c-prime to 0 (cf. 1 is prime to 1). Therefore, a(0)=1. Besides, every positive integer is c-prime to 0.

Examples

			Let n=12=(1)(100). It is clear that odd numbers end in (1) and are not prime to 12.
Besides, 6=(1)(10) also contains part (1) and 4=(100) is c-divisor of 12. Other even <=10 {0,2,8,10} are prime to 12. Thus a(12)=4.
		

Crossrefs

Formula

a(2^n)=2^n.

Extensions

More terms from Peter J. C. Moses, Dec 09 2013