A233422 Numbers n such that m - n^3 is a square, where m is the least square above n^3.
0, 2, 3, 6, 12, 20, 24, 30, 40, 42, 56, 60, 68, 75, 78, 84, 87, 120, 126, 160, 180, 248, 264, 270, 273, 308, 312, 318, 330, 336, 351, 360, 396, 564, 570, 588, 615, 620, 630, 635, 720, 738, 780, 840, 912, 1008, 1016, 1032, 1284, 1308, 1320, 1334, 1344, 1404, 1540, 1617
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fQ[n_]:=Module[{c=n^3,m},m=(Floor[Sqrt[c]]+1)^2;IntegerQ[Sqrt[m-c]]];Select[Range[0,1650],fQ] (* Harvey P. Dale, Jan 03 2024 *)
-
PARI
is(n)=issquare((sqrtint(n=n^3)+1)^2-n) \\ Charles R Greathouse IV, Dec 09 2013
-
Python
from math import isqrt def isSquare(a): sr = isqrt(a) return (a==sr*sr) for n in range(77777): n3 = n*n*n a = isqrt(n3)+1 if isSquare(a*a-n3): print(n, end=', ')
Comments