cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367011 a(n) = Sum_{k=0..n} k! * k^(n-k).

Original entry on oeis.org

1, 1, 3, 11, 51, 287, 1899, 14447, 124251, 1192127, 12623979, 146250287, 1840024251, 24983863967, 364140992139, 5670546353807, 93960923507931, 1650688221777407, 30646388716777899, 599565840087487727, 12328458398407260411
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k! * k^(n-k), {k, 0, n}], {n, 1, 20}]
  • PARI
    a(n) = sum(k=0, n, k!*k^(n-k)); \\ Seiichi Manyama, Dec 31 2023

Formula

a(n) ~ Pi * n^(n+1) / exp(n).
a(n) ~ sqrt(Pi*n/2) * n!.

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 31 2023

A368555 a(n) = Sum_{k=0..n} k! * 3^(n-k).

Original entry on oeis.org

1, 4, 14, 48, 168, 624, 2592, 12816, 78768, 599184, 5426352, 56195856, 647589168, 8169788304, 111687656112, 1642737336336, 25851001897008, 433240433787024, 7702095007089072, 144751385430099216, 2867156164466937648, 59692410665110252944
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k!*3^(n-k));

Formula

a(0) = 1; a(n) = 3*a(n-1) + n!.
a(n) = (n+3)*a(n-1) - 3*n*a(n-2).
a(n) ~ n!. - Vaclav Kotesovec, Jan 13 2024

A361042 Triangle read by rows: T(n, k) = Sum_{j=0..n} j! * binomial(n - j, n - k).

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 10, 1, 5, 11, 17, 34, 1, 6, 16, 28, 51, 154, 1, 7, 22, 44, 79, 205, 874, 1, 8, 29, 66, 123, 284, 1079, 5914, 1, 9, 37, 95, 189, 407, 1363, 6993, 46234, 1, 10, 46, 132, 284, 596, 1770, 8356, 53227, 409114, 1, 11, 56, 178, 416, 880, 2366, 10126, 61583, 462341, 4037914
Offset: 0

Views

Author

Peter Luschny, Mar 13 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 1,  2;
[2] 1,  3,  4;
[3] 1,  4,  7,  10;
[4] 1,  5, 11,  17,  34;
[5] 1,  6, 16,  28,  51, 154;
[6] 1,  7, 22,  44,  79, 205,  874;
[7] 1,  8, 29,  66, 123, 284, 1079, 5914;
[8] 1,  9, 37,  95, 189, 407, 1363, 6993, 46234;
[9] 1, 10, 46, 132, 284, 596, 1770, 8356, 53227, 409114.
		

Crossrefs

Cf. A003422 (main diagonal), A014144 (subdiagonal), A152689, A233449 (row sums), A133942 (alternating row sums), A293468 (central row).
Showing 1-3 of 3 results.