cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233508 Numerators of the triangle of polynomial coefficients P(0,x)=1, 2*P(n)=(1+x)*((1+x)^(n-1)+x^(n-1)). Of the first array of A133135.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 2, 3, 5, 1, 1, 5, 5, 5, 3, 1, 1, 3, 15, 10, 15, 7, 1, 1, 7, 21, 35, 35, 21, 4, 1, 1, 4, 14, 28, 35, 28, 14, 9, 1, 1, 9, 18, 42, 63, 63, 42, 18, 5, 1, 1, 5, 45, 60, 105, 126, 105, 60, 45, 11, 1
Offset: 0

Views

Author

Paul Curtz, Dec 11 2013

Keywords

Comments

Discovered via Euler polynomials A060096(n)/A060097(n).
The fractional sequence is 1, 1, 1, 1/2, 3/2, 1, 1/2, 3/2, 2, 1, 1/2, 2, 3, 5/2, 1,... =a(n)/b(n). There is a correspondant sequence for Bernoulli polynomials (*).

Examples

			1,
1, 1,
1, 3, 1,
1, 3, 2, 1,
1, 2, 3, 5, 1,
1, 5, 5, 5, 3, 1, etc.
		

Crossrefs

Cf. (*) A193815.

Programs

  • Mathematica
    p[n_] := (1+x)*((1+x)^(n-1)+x^(n-1))/2; t[n_, k_] := Coefficient[p[n], x, k] // Numerator; Table[t[n, k], {n, 0, 10 }, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)

Formula

a(n) = reduced A133138(n)/A007395.