A233521 Number of disjoint subsets s of 0..(n-1) such that, for every x in s, x^x (mod n) is in s.
1, 1, 1, 2, 1, 4, 2, 4, 3, 5, 1, 7, 2, 5, 7, 7, 3, 9, 2, 10, 8, 7, 3, 13, 5, 10, 5, 13, 3, 15, 4, 11, 9, 10, 9, 15, 2, 7, 12, 19, 6, 20, 4, 12, 15, 7, 4, 22, 11, 16, 12, 15, 2, 16, 14, 18, 10, 9, 1, 30, 7, 8, 22, 19, 16, 21, 4, 17, 9, 23, 4, 27, 5, 10, 19, 14, 14
Offset: 1
Keywords
Examples
The simplest nontrivial case is n = 4. In this case, a(4) = 2 because there are two subsets: {0,1,2} and {3}. Note that 0^0 == 1 (mod 4), 1^1 == 1 (mod 4), 2^2 == 0 (mod 4), and 3^3 == 3 (mod 4).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Pär Kurlberg, Florian Luca, and Igor Shparlinski, On the fixed points of the map x -> x^x modulo a prime, arXiv 1402.4464
Programs
-
Mathematica
Table[toDo = Range[0, n-1]; sets = {}; While[Length[toDo] > 0, k = toDo[[1]]; toDo = Rest[toDo]; lst = {k}; While[q = PowerMod[k, k, n]; ! MemberQ[lst, q], AppendTo[lst, q]; toDo = Complement[toDo, {q}]; k = q]; AppendTo[sets, lst]]; Do[int = Intersection[sets[[i]], sets[[j]]]; If[int != {}, sets[[i]] = Union[sets[[i]], sets[[j]]]; sets[[j]] = {}], {i, Length[sets]}, {j, i+1, Length[sets]}]; Length[DeleteCases[sets, {}]], {n, 100}]
Comments