A233557 Prime(k), where k is such that (1 + Sum_{i=1..k} prime(i)^17) / k is an integer.
2, 3, 7, 13, 29, 37, 641, 853, 2143, 18059, 26417, 34283, 48539, 122597, 146539, 254831, 8304757, 19534651, 26528699, 32820527, 47825363, 82199141, 124088207, 312168289, 409464961, 464174839, 1167927947, 1393486043, 1725361103, 1879982849, 4346448019, 7331901341, 7451088943, 27036461983, 39662532977, 113692593373, 449281234057
Offset: 1
Keywords
Examples
13 is a term because 13 is the 6th prime and the sum of the first 6 primes^17+1 = 9156096341463343272 when divided by 6 equals 1526016056910557212 which is an integer.
Links
- Bruce Garner, Table of n, a(n) for n = 1..44 (first 37 terms from Robert Price, terms 38..39 from Karl-Heinz Hofmann)
- OEIS Wiki, Sums of powers of primes divisibility sequences
Crossrefs
Programs
-
Mathematica
t = {}; sm = 1; Do[sm = sm + Prime[n]^17; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) With[{nn=175*10^8},Prime[#]&/@Select[Thread[{Range[nn],Accumulate[ Prime[ Range[nn]]^17]}],Divisible[#[[2]]+1,#[[1]]]&][[All,1]]] (* The program will take a long time to run *) (* Harvey P. Dale, Apr 13 2018 *)
-
PARI
is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^17); s==0 \\ Charles R Greathouse IV, Nov 30 2013
Comments