A233579 Numbers n such that the denominator/6 of Bernoulli(n) is congruent to {11, 17, 23, 25 or 29} modulo 30.
10, 16, 20, 22, 28, 30, 32, 44, 46, 48, 50, 52, 56, 58, 60, 64, 66, 80, 82, 84, 90, 92, 96, 104, 106, 112, 116, 128, 132, 136, 138, 140, 144, 148, 150, 154, 156, 160, 164, 166, 168, 170, 172, 174, 176, 178, 180, 184, 192, 198, 200, 212, 224, 226, 238, 240, 242, 246, 252, 260, 262, 268
Offset: 1
Keywords
Examples
112 is in this sequence, because the denominator of Bernoulli(112) = 1671270, and 1671270/6 = 278545, and 278545 is congruent to 25 modulo 30. As for the conjecture, the absolute value of the numerator of Bernoulli(112) is congruent to 5 modulo 6.
Links
- Michael G. Kaarhus, Table of n, a(n) for n = 1..10000
- M. G. Kaarhus, Splitting the Bernoulli Numbers
Programs
-
Maxima
float(true)$ load(basic)$ i:[1]$ n:2$ for r:1 thru 10000 step 0 do (for p:3 while p-1<=n step 0 do (p:next_prime(p), if mod(n, p-1)=0 then push(p,i)), d:(product(i[k],k,1,length(i))), x:mod(d,30), if (x=11 or x=17 or x=23 or x=25 or x=29) then (print(r, ", ",n), r:r+1), i:[1], n:n+2)$
Comments