cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233582 Coefficients of the generalized continued fraction expansion Pi = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

3, 21, 111, 113, 158, 160, 211, 216, 525, 1634, 1721, 7063, 8771, 15077, 26168, 58447, 223767, 254729, 587278, 1046086, 1491449, 1635223, 1689171, 2039096, 2290214, 13444599, 22666443, 1276179737, 4470200748
Offset: 1

Views

Author

Stanislav Sykora, Jan 02 2014

Keywords

Comments

Definition of "Blazys" generalized continued fraction expansion of an irrational real number x>1:
Set n=1,r=x; (ii) set a(n)=floor(r); (iii) set r=a(n)/(r-a(n)); (iv) increment n and iterate from point (ii).
For the inverse of this mapping, see A233588.

Crossrefs

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Pi, 33] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x,nmax)={local(c,v,k);
    v = vector(nmax);c = x;for(k=1,nmax,v[k] = floor(c);c = v[k]/(c-v[k]););return (v);}
    bx(Pi,1000) \\ Execution; use very high real precision

Formula

Pi = 3+3/(21+21/(111+111/(113+113/(158+...)))).