A233589 Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=(i-1)!.
1, 6, 9, 8, 8, 0, 4, 7, 6, 7, 6, 7, 0, 0, 0, 7, 2, 1, 1, 9, 5, 2, 6, 9, 0, 1, 1, 5, 9, 1, 4, 6, 4, 0, 4, 3, 2, 5, 5, 9, 7, 3, 0, 9, 3, 6, 6, 4, 9, 8, 3, 9, 6, 9, 7, 8, 1, 7, 4, 1, 9, 1, 7, 4, 2, 6, 8, 9, 2, 0, 0, 0
Offset: 1
Examples
1.69880476767000721195269011591464043255973093664983969781741917426892...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..20000 (terms 6942..20000 corrected by Amiram Eldar)
- Stanislav Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
- Stanislav Sykora, PARI/GP scripts for Blazys expansions and fractions, OEIS Wiki.
Crossrefs
Programs
-
Mathematica
RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Range[0, 18]!], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
-
PARI
See the link.
Formula
Equals 0!+0!/(1!+1!/(2!+2!/(3!+3!/(4!+...)))).
Equals simple continued fraction [0!!; 1!!, 2!!, 3!!, ..., n!!, ...] where the double factorial n!! = A006882(n). - Thomas Ordowski, Oct 21 2024