cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233694 Position of n in the sequence (or tree) S generated in order by these rules: 0 is in S; if x is in S then x + 1 is in S; if nonzero x is in S then 1/x is in S; if x is in S, then i*x is in S; where duplicates are deleted as they occur.

Original entry on oeis.org

1, 2, 3, 5, 11, 23, 49, 102, 212, 443, 926, 1939, 4064, 8509, 17816, 37303, 78105, 163544, 342454, 717076, 1501502, 3144024, 6583334, 13784969
Offset: 0

Views

Author

Clark Kimberling, Dec 19 2013

Keywords

Comments

It can be proved using the division algorithm for Gaussian integers that S is the set of Gaussian rational numbers: (b + c*i)/d, where b,c,d are integers and d is not 0.
The differences of this sequence give the number of elements in each level of the tree. This means that d(n) = a(n) - a(n-1) is at least 1, and is bounded by 3*d(n-1), since there are three times as many elements in each level, before we exclude repetitions. - Jack W Grahl, Aug 10 2018

Examples

			The first 16 numbers generated are as follows: 0, 1, 2, i, 3, 1/2, 2 i, 1 + i, -i, -1, 4, 1/3, 3 i, 3/2, i/2, 1 + 2 i. The positions of the nonnegative integers are 1, 2, 3, 5, 11.
		

Crossrefs

Programs

  • Mathematica
    Off[Power::infy]; x = {0}; Do[x = DeleteDuplicates[Flatten[Transpose[{x, x + 1, 1/x, I*x} /. ComplexInfinity -> 0]]], {18}]; On[Power::infy]; t1 = Flatten[Position[x, _?(IntegerQ[#] && NonNegative[#] &)]]    (* A233694 *)
    t2 = Flatten[Position[x, _?(IntegerQ[#] && Negative[#] &)]]  (* A233695 *)
    t = Union[t1, t2]  (* A233696 *)
    (* Peter J. C. Moses, Dec 21 2013 *)

Extensions

More terms from Jack W Grahl, Aug 10 2018