A233735 G.f.: x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 + x^2 - x + 1) / ((1-x^5) * (1-x)^2).
0, 0, 0, 1, 1, 2, 4, 6, 8, 10, 13, 16, 20, 25, 29, 34, 39, 45, 52, 58, 65, 72, 80, 88, 96, 105, 114, 124, 134, 144, 155, 166, 178, 190, 202, 215, 228, 242, 256, 270, 285, 300, 316, 332, 348, 365, 382, 400, 418, 436, 455, 474, 494, 514, 534
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Packings of a(n) Greek crosses. [Note that it is possible to pack 17 Greek crosses into an 11 X 11 grid (see A085577), so these arrangements are not always optimal. - _N. J. A. Sloane_, Apr 19 2015]
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1)
Programs
-
Mathematica
CoefficientList[Series[x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 +x^2 - x + 1)/((1 - x^5)*(1 - x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 08 2018 *)
-
PARI
x='x+O('x^50); Vec(x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 +x^2 - x + 1)/((1 - x^5)*(1 - x)^2)) \\ G. C. Greubel, Jan 08 2018
Extensions
Entry revised by N. J. A. Sloane, Apr 19 2015. The new definition is a g.f. found by Ralf Stephan on Dec 17 2013. The old definition was wrong.
Comments