A235671 Triangle read by rows in which row n lists the proper divisors of n in increasing order, 2n, and the proper divisors of n in decreasing order.
2, 1, 4, 1, 1, 6, 1, 1, 2, 8, 2, 1, 1, 10, 1, 1, 2, 3, 12, 3, 2, 1, 1, 14, 1, 1, 2, 4, 16, 4, 2, 1, 1, 3, 18, 3, 1, 1, 2, 5, 20, 5, 2, 1, 1, 22, 1, 1, 2, 3, 4, 6, 24, 6, 4, 3, 2, 1, 1, 26, 1, 1, 2, 7, 28, 7, 2, 1, 1, 3, 5, 30, 5, 3, 1, 1, 2, 4, 8, 32, 8, 4, 2, 1
Offset: 1
Examples
The irregular triangle begins: 2; 1, 4, 1; 1, 6, 1; 1, 2, 8, 2, 1; 1, 10, 1; 1, 2, 3, 12, 3, 2, 1; 1, 14, 1; 1, 2, 4, 16, 4, 2, 1; 1, 3, 18, 3, 1; 1, 2, 5, 20, 5, 2, 1; 1, 22, 1; 1, 2, 3, 4, 6, 24, 6, 4, 3, 2, 1; ... Also: 1; 1/2, 2, 1/2; 1/2, 3, 1/2; 1/2, 1, 4, 1, 1/2; 1/2, 5, 1/2; 1/2, 1, 3/2, 6, 3/2, 1, 1/2; 1/2, 7, 1/2; 1/2, 1, 2, 8, 2, 1, 1/2; 1/2, 3/2, 9, 3/2, 1/2; 1/2, 1, 5/2, 10, 5/2, 1, 1/2; 1/2, 11, 1/2; 1/2, 1, 3/2, 2, 3, 12, 3, 2, 3/2, 1, 1/2; ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
pd[n_]:=Module[{d=Most[Divisors[n]]},Flatten[Join[{d,{2n},Reverse[d]}]]]; Flatten[Array[pd,20]] (* Harvey P. Dale, Dec 22 2014 *)
Comments