A233774 Total number of vertices in the first n rows of Sierpinski gasket, with a(0) = 1.
1, 3, 6, 10, 15, 19, 25, 33, 42, 46, 52, 60, 70, 78, 90, 106, 123, 127, 133, 141, 151, 159, 171, 187, 205, 213, 225, 241, 261, 277, 301, 333, 366, 370, 376, 384, 394, 402, 414, 430, 448, 456, 468, 484, 504, 520, 544, 576, 610, 618, 630, 646, 666, 682
Offset: 0
Keywords
Examples
Illustration of initial terms: ----------------------------------------------------- Diagram n A233775(n) a(n) ----------------------------------------------------- * 0 1 1 /T\ *---* 1 2 3 /T\ /T\ *---*---* 2 3 6 /T\ /T\ *---* *---* 3 4 10 /T\ /T\ /T\ /T\ *---*---*---*---* 4 5 15 /T\ /T\ *---* *---* 5 4 19 ----------------------------------------------------- After five stages the number of "black" triangles in the structure is A006046(5) = 11. The total number of vertices is 19, so a(5) = 19.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Eric Weisstein's World of Mathematics, SierpiĆski Gasket Graph.
- Wikipedia, Sierpinski triangle.
Programs
-
Mathematica
A233775[n_] := If[n == 0, 1, (2^IntegerExponent[n, 2]+1)*2^(DigitSum[n, 2]-1)]; Accumulate[Array[A233775, 100, 0]] (* Paolo Xausa, Aug 07 2024 *)
Formula
a(2^k) = A067771(k), k >= 0.