cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233774 Total number of vertices in the first n rows of Sierpinski gasket, with a(0) = 1.

Original entry on oeis.org

1, 3, 6, 10, 15, 19, 25, 33, 42, 46, 52, 60, 70, 78, 90, 106, 123, 127, 133, 141, 151, 159, 171, 187, 205, 213, 225, 241, 261, 277, 301, 333, 366, 370, 376, 384, 394, 402, 414, 430, 448, 456, 468, 484, 504, 520, 544, 576, 610, 618, 630, 646, 666, 682
Offset: 0

Views

Author

Omar E. Pol, Dec 16 2013

Keywords

Examples

			Illustration of initial terms:
-----------------------------------------------------
           Diagram            n     A233775(n)   a(n)
-----------------------------------------------------
              *               0         1         1
             /T\
            *---*             1         2         3
           /T\ /T\
          *---*---*           2         3         6
         /T\     /T\
        *---*   *---*         3         4        10
       /T\ /T\ /T\ /T\
      *---*---*---*---*       4         5        15
     /T\             /T\
    *---*           *---*     5         4        19
-----------------------------------------------------
After five stages the number of "black" triangles in the structure is A006046(5) = 11. The total number of vertices is 19, so a(5) = 19.
		

Crossrefs

Partial sums of A233775.

Programs

  • Mathematica
    A233775[n_] := If[n == 0, 1, (2^IntegerExponent[n, 2]+1)*2^(DigitSum[n, 2]-1)];
    Accumulate[Array[A233775, 100, 0]] (* Paolo Xausa, Aug 07 2024 *)

Formula

a(2^k) = A067771(k), k >= 0.