cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233807 Number of tilings of an n X n square using right trominoes and at most one monomino.

Original entry on oeis.org

1, 1, 4, 0, 16, 128, 162, 34528, 943096, 1193600, 3525377600, 480585761344, 2033502499954, 46983507796973152, 32908187880881958736, 458324092996867592192, 83153202122213272708832688, 299769486068040749617049301344
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2013

Keywords

Examples

			a(2) = 4:
  .___.  .___.  .___.  .___.
  |_| |  | |_|  | ._|  |_. |
  |___|  |___|  |_|_|  |_|_| .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, w, l) option remember; local k, t;
          if max(l[])>n then 0 elif n=0 then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, w, map(h->h-t, l))
        else for k while l[k]>0 do od;
             `if`(w, b(n, false, s(k=1, l)), 0)+
             `if`(k>1 and l[k-1]=1, b(n, w, s(k=2, k-1=2, l)), 0)+
             `if`(k b(n, evalb(irem(n, 3)>0), [0$n]): s:= subsop:
    seq(a(n), n=0..10);
  • Mathematica
    $RecursionLimit = 1000; s = ReplacePart; b[n_, w_, l_] := b[n, w, l] = Module[{k, t}, Which[Max[l] > n, 0,n == 0, 1,Min[l] > 0, t = Min[l]; b[n-t, w, l-t], True, For[k = 1, l[[k]] > 0, k++ ]; If[w, b[n, False, s[l, k -> 1]], 0]+If[k > 1 && l[[k-1]] == 1, b[n, w, s[l, {k -> 2, k-1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 1, b[n, w, s[l, {k -> 2, k+1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 0, b[n, w, s[l, {k -> 1, k+1 -> 2}]]+b[n, w, s[l, {k -> 2, k+1 -> 1}]] + If[w, b[n, False, s[l, {k -> 2, k+1 -> 2}]], 0], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, w, s[l, {k -> 2, k+1 -> 2, k+2 -> 2}]], 0] ] ]; a[n_] := b[n, Mod[n, 3] > 0, Array[0 &, n]]; Table[Print[an = a[n]]; an, {n, 0, 16}] (* Jean-François Alcover, Dec 30 2013, translated from Maple *)

Extensions

a(17) from Alois P. Heinz, Sep 24 2014