A372871 Number of compositions of n into n nonnegative parts such that their xor-sum is not zero.
0, 1, 2, 10, 28, 126, 236, 1716, 4376, 24310, 71452, 352716, 1036432, 5200300, 15661088, 77558760, 234338224, 1166803110, 3538500140, 17672631900, 53754680928, 269128937220, 811847006192, 4116715363800, 12392037943040, 63205303218876, 190668639444376
Offset: 0
Keywords
Examples
For n=2 the a(2)=2 solutions are: {0,2}, {2,0}. For n=3 the a(3)=10 solutions are: {0,0,3}, {0,1,2}, {0,2,1}, {0,3,0}, {1,0,2}, {1,1,1}, {1,2,0}, {2,0,1}, {2,1,0}, {3,0,0}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
- C. L. Bouton, Nim, A Game with a Complete Mathematical Theory, Annals of Mathematics, Second Series, vol. 3 (1/4), 1902, 35-39.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, signum(t), add(b(n-j, i-1, Bits[Xor](j, t)), j=`if`(i=1, n, 0..n))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..32); # Alois P. Heinz, May 15 2024
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], Sum[b[n-j, i-1, BitXor[j, t]], {j, If[i == 1, n, 0], n}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jul 07 2025, after Alois P. Heinz *)
Formula
a(n) = A088218(n) if n is odd.
Comments