A233825 Decimal expansion of Nicolas's constant in his condition for the Riemann Hypothesis (RH).
3, 6, 4, 4, 4, 1, 5, 0, 9, 6, 4, 0, 7, 3, 7, 0, 1, 4, 1, 0, 6, 5, 1, 1, 6, 1, 9, 2, 8, 3, 5, 1, 4, 8, 1, 6, 0, 0, 5, 2, 2, 6, 0, 2, 4, 6, 6, 4, 3, 2, 4, 2, 4, 5, 6, 8, 5, 2, 4, 6, 3, 7, 5, 8, 2, 6, 3, 7, 4, 1, 7, 3, 4, 8, 0, 9, 2, 9, 5, 8, 1, 8, 6, 8, 3, 2, 3, 0, 5, 7, 0, 5, 1, 7, 5, 1, 2, 6, 1, 6, 1, 5, 5, 6, 4, 1, 4, 3, 3, 5, 5, 3, 1, 7, 7, 5, 2, 9, 2, 7
Offset: 1
Examples
3.64441509640737014106511619283514816005226024664324245685246375826374...
Links
- Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. A.M.S., 50 (2013), 527-628; see p. 574.
- Jean-Louis Nicolas, Small values of the Euler function and the Riemann hypothesis, Acta Arith., Vol. 155, No. 3 (2012), pp. 311-321; arXiv preprint, arXiv:1202.0729 [math.NT], 2012.
Programs
-
Mathematica
RealDigits[Exp[EulerGamma]*(4 + EulerGamma - Log[4*Pi]), 10, 120][[1]] (* Amiram Eldar, May 25 2023 *)
-
PARI
exp(Euler)*(4 + Euler - log(4*Pi)) \\ Charles R Greathouse IV, Mar 10 2016
Formula
Equals e^gamma*(4 + gamma - log(4*Pi)), where gamma is the Euler-Mascheroni constant.
Equals e^gamma*(2 + beta), where beta = Sum 1/(rho*(1-rho)), where rho runs over all nonreal zeros of the zeta function.
Comments