cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233833 a(n) = 3*binomial(7*n+3, n)/(7*n+3).

Original entry on oeis.org

1, 3, 24, 253, 3045, 39627, 543004, 7718340, 112752783, 1682460520, 25533901536, 392912889915, 6116090678334, 96133810101609, 1523687678528400, 24324750346691480, 390786855500604195, 6313161418594235271, 102494297789621214400, 1671366110239940499000
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=3.

Crossrefs

Programs

  • Magma
    [3*Binomial(7*n+3, n)/(7*n+3): n in [0..30]];
  • Mathematica
    Table[3 Binomial[7 n + 3, n]/(7 n + 3), {n, 0, 30}]
  • PARI
    a(n)=3*binomial(7*n+3,n)/(7*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/3))^3+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=3.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(3/7,4/7,5/7,6/7,8/7,9/7; 2/3,5/6,1,7/6,4/3,3/2; 823543*x/46656).
a(n) ~ 7^(7*n+5/2)/(sqrt(Pi)*3^(6*n+5/2)*4^(3*n+2)*n^(3/2)). (End)