cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233835 a(n) = 8*binomial(7*n + 8, n)/(7*n + 8).

Original entry on oeis.org

1, 8, 84, 1008, 13090, 179088, 2542512, 37106784, 553270671, 8391423040, 129058047580, 2008018827360, 31550226597162, 499892684834368, 7978140653296800, 128138773298754240, 2069603881026760323, 33593111381834512200, 547698081896206040800, 8965330544164089648000, 147285313888568167177866
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 7, r = 8.

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [8*Binomial(7*n+8, n)/(7*n+8): n in [0..30]];
  • Mathematica
    Table[8 Binomial[7 n + 8, n]/(7 n + 8), {n, 0, 30}]
  • PARI
    a(n) = 8*binomial(7*n+8,n)/(7*n+8);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/8))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 8.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^8), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/8) is the o.g.f. for A002296. (End)