A233863 Prime(n), where n is such that (1 + Sum_{i=1..n} prime(i)^3) / n is an integer.
2, 3, 7, 11, 13, 29, 37, 43, 257, 421, 449, 7333, 7673, 9433, 9539, 12163, 53551, 74759, 119429, 199909, 295703, 2494781, 6941633, 39150679, 50026091, 165204709, 410054731, 724768817, 1282680871, 1777452847, 2923304383, 6053209493, 7423469173, 35896955599, 46936773853
Offset: 1
Keywords
Examples
a(5) = 13, because 13 is the 6th prime and the sum of the first 6 primes^3+1 = 4032 when divided by 6 equals 672 which is an integer.
Links
- Bruce Garner, Table of n, a(n) for n = 1..54
- OEIS Wiki, Sums of powers of primes divisibility sequences
Crossrefs
Programs
-
Mathematica
t = {}; sm = 1; Do[sm = sm + Prime[n]^3; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) Module[{nn=7500,pt},pt=1+Accumulate[Prime[Range[nn]]^3];Prime[#]&/@ Select[ Thread[{pt,Range[nn]}],Divisible[#[[1]],#[[2]]]&]][[All,2]] (* The program generates the first 18 terms of the sequence. It is not suitable for generating many more. *) (* Harvey P. Dale, Mar 17 2022 *)
-
PARI
is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^3); s==0 \\ Charles R Greathouse IV, Nov 30 2013
Comments