A233998 Values of n such that numbers of the form x^2+n*y^2 for some integers x, y cannot have prime factor of 5 raised to an odd power.
2, 3, 7, 8, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 50, 52, 53, 57, 58, 62, 63, 67, 68, 72, 73, 75, 77, 78, 82, 83, 87, 88, 92, 93, 97, 98, 102, 103, 107, 108, 112, 113, 117, 118, 122, 123, 127, 128, 132, 133, 137, 138, 142, 143, 147, 148, 152, 153, 157, 158
Offset: 1
Programs
-
PARI
is(n)=n/=25^valuation(n, 25); n%5==2||n%5==3 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013
-
Python
from sympy import integer_log def A233998(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(((m:=x//25**i)-2)//5+(m-3)//5+2 for i in range(integer_log(x,25)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 19 2025
Formula
a(n) = 2.4 n + O(log n). - Charles R Greathouse IV, Dec 19 2013
Comments