A234023 Positions n where abs(A234022(n)-A234022(n+1)) > 1.
47, 51, 59, 67, 75, 79, 175, 179, 187, 195, 203, 207, 291, 299, 339, 347, 419, 427, 467, 475, 531, 539, 611, 619, 659, 667, 739, 747, 767, 771, 779, 815, 831, 847, 883, 891, 899, 907, 943, 959, 975, 1011, 1019, 1027, 1035, 1087, 1139, 1147, 1155, 1163, 1215
Offset: 1
Keywords
Examples
47 is in the sequence, as A193231(47) = 59, A193231(48) = 34, and A007088(59)='111011', A007088(34)='100010', thus there are five 1-bits in the former, while there are only two in the latter, and abs(5-2) = 3 > 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Joerg Arndt, Matters Computational (The Fxtbook), section 1.19, "Invertible transforms on words", pp. 49--55. [This sequence appears on page 50]
Programs
-
Python
def a065621(n): return n^(2*(n - (n&-n))) def a048724(n): return n^(2*n) def a193231(n): if n<2: return n if n%2==0: return a048724(a193231(n//2)) else: return a065621(1 + a193231((n - 1)//2)) def a234022(n): return bin(a193231(n))[2:].count("1") def ok(n): return abs(a234022(n) - a234022(n + 1))>1 print([n for n in range(1, 1501) if ok(n)]) # Indranil Ghosh, Jun 05 2017
Comments