cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234040 a(n) = binomial(2*(n+1),n) * gcd(n,2)/(2*(n+1)).

Original entry on oeis.org

1, 1, 5, 7, 42, 66, 429, 715, 4862, 8398, 58786, 104006, 742900, 1337220, 9694845, 17678835, 129644790, 238819350, 1767263190, 3282060210, 24466267020, 45741281820, 343059613650, 644952073662, 4861946401452, 9183676536076, 69533550916004
Offset: 0

Views

Author

Wolfdieter Lang, Feb 23 2014

Keywords

Comments

This gives the next-to-central entries of the even-indexed rows of the triangle A107711.
For the central entries (of the even-numbered rows) see A001700.
This sequence is composed of the bisection sequences A024492 (even part) and A065097 (odd part).

Crossrefs

Programs

  • Magma
    [Binomial(2*(n+1),n)*Gcd(n,2)/(2*(n+1)): n in [0..30]]; // Vincenzo Librandi, Feb 25 2014
  • Mathematica
    Table[Binomial[2 (n + 1), n] GCD[n, 2]/(2 (n + 1)), {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2014 *)

Formula

a(n) = binomial(2*(n+1),n)*gcd(n,2)/(2*(n+1)) for n >= 0.
a(n) = A107711(2*(n+1), n) for n >= 0.
G.f.: (3*c(x)- c(-x)-2)/(4*x) =(4*(1-x) - 3*sqrt(1-4*x) - sqrt(1+4*x))/(8*x^2), with c(x) the o.g.f. of the Catalan numbers A000108. See the bisection comment above.

Extensions

a(26) from Vincenzo Librandi, Feb 25 2014