cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234100 Products p*q*r of distinct primes for which (p*q*r - 1)/2 is prime.

Original entry on oeis.org

195, 255, 399, 455, 483, 555, 615, 627, 663, 759, 795, 915, 935, 1095, 1235, 1239, 1295, 1419, 1455, 1479, 1515, 1547, 1595, 1659, 1767, 1955, 2067, 2139, 2235, 2247, 2343, 2387, 2555, 2595, 2607, 2639, 2847, 2895, 2919, 2967, 3219, 3243, 3335, 3395, 3399
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2013

Keywords

Examples

			97 = (3*5*13 - 1)/2, and 3*5*13 is the least product p*q*r of 3 distinct primes for which (p*q*r - 1)/2 is prime, so a(1) = 3*5*13.
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t - 1)/2, 120] (* A234099 *)
    v = Flatten[Position[PrimeQ[(t - 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* this sequence *)
    (w - 1)/2 (* A234101 *)    (* Peter J. C. Moses, Dec 23 2013 *)
    With[{upto=4000},Select[Union[Times@@@Select[Subsets[Prime[ Range[ PrimePi[ upto/ 6]]],{3}],PrimeQ[(Times@@#-1)/2]&]],#<=upto&]] (* Harvey P. Dale, May 12 2017 *)