cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234103 Products p*q*r of distinct primes for which (p*q*r + 1)/2 is prime.

Original entry on oeis.org

105, 165, 273, 345, 357, 385, 465, 561, 705, 777, 861, 885, 897, 957, 1005, 1045, 1113, 1173, 1185, 1281, 1353, 1545, 1645, 1653, 1677, 1705, 1905, 1965, 2037, 2065, 2121, 2185, 2193, 2233, 2301, 2373, 2445, 2553, 2613, 2865, 2877, 2905, 2985, 3021, 3157
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2013

Keywords

Examples

			105 = 3*5*7, and (105 + 1)/2 is prime.
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t + 1)/2, 120] (* A234102 *)
    v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A234103 *)
    (w + 1)/2  (* A234104 *)    (* Peter J. C. Moses, Dec 23 2013 *)
    With[{nn=50},Select[Union[Select[Times@@@Subsets[Prime[Range[2,nn]],{3}],PrimeQ[(#+1)/2]&]],#<=15*Prime[nn]&]]  (* Harvey P. Dale, May 12 2025 *)