cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A234102 Integers of the form (p*q*r + 1)/2, where p, q, r are distinct primes.

Original entry on oeis.org

53, 83, 98, 116, 128, 137, 143, 173, 179, 193, 200, 215, 218, 228, 233, 242, 278, 281, 298, 305, 308, 314, 323, 326, 332, 333, 353, 358, 371, 380, 389, 398, 403, 431, 443, 449, 452, 458, 468, 479, 485, 494, 501, 503, 508, 512, 523, 533, 543, 548, 553, 557
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2013

Keywords

Examples

			53 = (3*5*7 + 1)/2.
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t + 1)/2, 120] (* A234102 *)
    v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A234103 *)
    (w + 1)/2  (* A234104 *)    (* Peter J. C. Moses, Dec 23 2013 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A234102(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        return bisection(f,n,n)+1>>1 # Chai Wah Wu, Oct 18 2024

Formula

1 + A234099.
a(n) = (A046389(n)+1)/2. - Chai Wah Wu, Oct 18 2024

A234103 Products p*q*r of distinct primes for which (p*q*r + 1)/2 is prime.

Original entry on oeis.org

105, 165, 273, 345, 357, 385, 465, 561, 705, 777, 861, 885, 897, 957, 1005, 1045, 1113, 1173, 1185, 1281, 1353, 1545, 1645, 1653, 1677, 1705, 1905, 1965, 2037, 2065, 2121, 2185, 2193, 2233, 2301, 2373, 2445, 2553, 2613, 2865, 2877, 2905, 2985, 3021, 3157
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2013

Keywords

Examples

			105 = 3*5*7, and (105 + 1)/2 is prime.
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t + 1)/2, 120] (* A234102 *)
    v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A234103 *)
    (w + 1)/2  (* A234104 *)    (* Peter J. C. Moses, Dec 23 2013 *)
    With[{nn=50},Select[Union[Select[Times@@@Subsets[Prime[Range[2,nn]],{3}],PrimeQ[(#+1)/2]&]],#<=15*Prime[nn]&]]  (* Harvey P. Dale, May 12 2025 *)

A234500 Integers of the form (p*q*r*s + 1)/2, where p, q, r, s are distinct primes.

Original entry on oeis.org

578, 683, 893, 998, 1073, 1208, 1403, 1502, 1523, 1568, 1628, 1658, 1853, 1898, 1943, 1964, 2153, 2195, 2243, 2258, 2321, 2393, 2423, 2468, 2503, 2558, 2594, 2657, 2783, 2828, 2933, 3023, 3053, 3098, 3140, 3203, 3273, 3278, 3350, 3383, 3392, 3518, 3548, 3581
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2014

Keywords

Examples

			578 = (3*5*7*11 + 1)/2.
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range[1, 20000, 2], Map[Last, FactorInteger[#]] == Table[1, {4}] &]; Take[(t + 1)/2, 120] (* A234500*)
    v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A234501 *)
    (w + 1)/2 (* A234502 *)   (* Peter J. C. Moses, Dec 23 2013 *)
    With[{nn=20},Select[Union[(Times@@#+1)/2&/@Subsets[Prime[Range[2,nn]],{4}]],#<=(105Prime[nn]+1)/2&]] (* Harvey P. Dale, Oct 18 2021 *)

Formula

1 + A234105.

A234502 Primes of the form (p*q*r*s + 1)/2, where p, q, r, s are distinct primes.

Original entry on oeis.org

683, 1523, 2153, 2243, 2393, 2423, 2503, 2657, 3023, 3203, 3581, 3833, 4133, 4373, 4583, 4673, 4967, 5003, 5051, 5233, 5273, 5303, 5483, 5653, 5843, 6221, 6299, 6793, 7193, 7211, 7487, 7523, 7703, 7823, 7937, 8093, 8243, 8543, 8693, 9323, 9377, 9461, 9533
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2014

Keywords

Examples

			(See A234501.)
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range[1, 20000, 2], Map[Last, FactorInteger[#]] == Table[1, {4}] &]; Take[(t + 1)/2, 120] (* A234500 *)
    v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A234501 *)
    (w + 1)/2 (* A234502 *)   (* Peter J. C. Moses, Dec 23 2013 *)
Showing 1-4 of 4 results.