A234470 Number of ways to write n = k + m with k > 0 and m > 2 such that p(k + phi(m)/2) is prime, where p(.) is the partition function (A000041) and phi(.) is Euler's totient function.
0, 0, 0, 1, 2, 3, 4, 5, 5, 4, 4, 4, 2, 2, 3, 5, 4, 2, 4, 2, 3, 2, 3, 2, 3, 1, 0, 3, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 4, 2, 1, 4, 2, 1, 2, 3, 3, 3, 1, 0, 4, 2, 4, 1, 1, 2, 2, 3, 2, 2, 0, 2, 2, 1, 2, 2, 1, 1, 2, 2, 4, 2, 1, 0, 1, 3, 1, 0, 2, 4, 3, 1, 6, 2, 2, 1, 2, 4, 3, 1, 2, 6, 2, 3, 2, 2, 2, 2, 3, 3
Offset: 1
Keywords
Examples
a(26) = 1 since 26 = 2 + 24 with p(2 + phi(24)/2) = p(6) = 11 prime. a(54) = 1 since 54 = 27 + 27 with p(27 + phi(27)/2) = p(36) = 17977 prime. a(73) = 1 since 73 = 1 + 72 with p(1 + phi(72)/2) = p(36) = 17977 prime. a(110) = 1 since 110 = 65 + 45 with p(65 + phi(45)/2) = p(77) = 10619863 prime. a(150) = 1 since 150 = 123 + 27 with p(123 + phi(27)/2) = p(132) = 6620830889 prime. a(170) = 1 since 170 = 167 + 3 with p(167 + phi(3)/2) = p(168) = 228204732751 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..6500
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
f[n_,k_]:=PartitionsP[k+EulerPhi[n-k]/2] a[n_]:=Sum[If[PrimeQ[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments