A234248 Number of distinct lines passing through at least three points in a triangular grid of side n.
3, 6, 12, 21, 36, 57, 90, 129, 186, 261, 354, 465, 612, 783, 990, 1233, 1524, 1863, 2262, 2703, 3216, 3801, 4458, 5187, 6024, 6951, 7986, 9129, 10392, 11775, 13302, 14943, 16746, 18711, 20844, 23145, 25668, 28377, 31296, 34425, 37782, 41367, 45210, 49287
Offset: 3
Examples
a b c d e f g h i j In this triangle grid of side 4, there are a(4) = 6 distinct lines passing through at least 3 points: ag, gj, ja, ch, df, ib.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 3..10000
Crossrefs
Cf. A225606 (analogous problem for square grids).
Programs
-
PARI
g(n) = if (n>0, n*(n+1)/2, 0); a(n) = my(k=3); 3*sum(j=1, (n-1)\(k-1), eulerphi(j) * (g(n-(k-1)*j) - g(n-k*j))); \\ Michel Marcus, Aug 19 2014
Formula
a(n) = 3*Sum_{j=1..floor((n-1)/(k-1))} EulerPhi(j) * (g(n-(k-1)*j) - g(n-k*j)) where k = 3 (the minimum required number of points) and g(i) = A000217(i) (i.e., the i-th triangular number) if i > 0, otherwise 0. - Jon E. Schoenfield, Aug 17 2014
Extensions
More terms from Jon E. Schoenfield, Aug 17 2014