cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A234251 Triangle T(n, k) = Number of ways to choose k points from an n X n X n triangular grid so that no three of them form a 2 X 2 X 2 subtriangle. Triangle T read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 16, 6, 1, 10, 45, 111, 156, 120, 42, 2, 1, 15, 105, 439, 1191, 2154, 2583, 1977, 885, 189, 9, 1, 21, 210, 1305, 5565, 17052, 38337, 63576, 77208, 67285, 40512, 15750, 3480, 333, 9, 1, 28, 378, 3240, 19620, 88590, 307362, 833228, 1779219
Offset: 1

Views

Author

Heinrich Ludwig, Feb 06 2014

Keywords

Comments

n starts from 1. The maximal number of points that can be chosen from a grid of side n, so that no three of them are forming a subtriangle of side 2, is A007980(n - 1). So k ranges from 0 to A007980(n - 1).
Column #2 (k = 1) is A000217.
Column #3 (k = 2) is A050534.
Column #4 (k = 3) is A234250.

Examples

			Triangle begins
  1,  1;
  1,  3,   3;
  1,  6,  15,  16,    6;
  1, 10,  45, 111,  156,  120,   42,    2;
  1, 15, 105, 439, 1191, 2154, 2583, 1977, 885, 189, 9;
  ...
There are no more than T(4, 7) = 2 ways to choose 7 points (X) from a 4 X 4 X 4 grid so that no 3 of them form a 2 X 2 X 2 subtriangle:
        X              X
       X .            . X
      . X X          X X .
     X X . X        X . X X
		

Crossrefs

A237529 Number of ways to choose 4 points in an n X n X n triangular grid so that no 3 of them form a 2 X 2 X 2 subtriangle.

Original entry on oeis.org

6, 156, 1191, 5565, 19620, 57351, 146391, 336951, 714555, 1417515, 2660196, 4763226, 8191911, 13604220, 21909810, 34341666, 52542036, 78664446, 115493685, 166585755, 236429886, 330634821, 456141681, 621465825, 836970225, 1115172981, 1471091706, 1922627616
Offset: 3

Views

Author

Heinrich Ludwig, Feb 09 2014

Keywords

Comments

All elements of the sequence are multiples of 3.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{6,156,1191,5565,19620,57351,146391,336951,714555},40] (* Harvey P. Dale, Sep 29 2019 *)
  • PARI
    Vec(-3*x^3*(2*x^6-11*x^5+21*x^4-14*x^3+x^2+34*x+2)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 09 2014

Formula

a(n) = (n-1)*(n-2)*(n^6 + 7*n^5 + 13*n^4 - 7*n^3 - 230*n^2 - 408*n + 1152)/384.
G.f.: -3*x^3*(2*x^6 - 11*x^5 + 21*x^4 - 14*x^3 + x^2 + 34*x + 2) / (x-1)^9. - Colin Barker, Feb 09 2014

A237530 Number of non-equivalent (mod D_3) ways to choose three points in an n X n X n triangular grid so that they do not form a 2 X 2 X 2 subtriangle.

Original entry on oeis.org

0, 4, 22, 82, 231, 566, 1216, 2410, 4428, 7712, 12780, 20392, 31409, 47032, 68594, 97878, 136836, 187998, 254100, 338602, 445213, 578524, 743424, 945860, 1192126, 1489768, 1846734, 2272430, 2776725, 3371170, 4067840, 4880734, 5824442, 6915732, 8172036, 9613236
Offset: 2

Views

Author

Heinrich Ludwig, Feb 13 2014

Keywords

Comments

Without the restriction "non-equivalent (mod D_3)" the numbers are given by A234250.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,4,22,82,231,566,1216,2410,4428,7712,12780,20392},40] (* Harvey P. Dale, Dec 09 2021 *)

Formula

a(n) = (n^6 + 3*n^5 - 3*n^4 + 10*n^3 - 48*n^2 + IF(n==1 mod 2)*(27*n^2 - 45*n - 9) + IF(n==1 mod 3)*64)/288.
G.f.: x^3*(x^7-x^6-2*x^5-15*x^4-13*x^3-16*x^2-10*x-4) / ((x-1)^7*(x+1)^3*(x^2+x+1)). - Colin Barker, Feb 14 2014
Showing 1-3 of 3 results.