cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095793 G.f.: A(x) = 1+x*(1+x*(1+x*(...(1+x*(...)^n)...)^3)^2)^1.

Original entry on oeis.org

1, 1, 1, 2, 7, 36, 245, 2072, 20913, 245012, 3265581, 48766020, 806254126, 14616629622, 288272307999, 6144034279588, 140715744051270, 3446290524236454, 89874216926157157, 2486386071747194244
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2004

Keywords

Examples

			G.f.: 1 + x + x^2 + 2*x^3 + 7*x^4 + 36*x^5 + 245*x^6 + 2072*x^7 +...
such that
A(x) = 1 + x*B(x), B(x) = 1 + x*C(x)^2, C(x) = 1 + x*D(x)^3, D(x) = 1 + x*E(x)^4, E(x) = 1 + x*F(x)^5, F(x) = 1 + x*G(x)^6, G(x) = 1 + x*H(x)^7, ...
where A(x), B(x), C(x), ... are the g.f. of the sequences given below.
A: [1, 1, 1, 2, 7, 36, 245, 2072, 20913, 245012, ...];
B: [1, 1, 2, 7, 36, 245, 2072, 20913, 245012, 3265581, ...];
C: [1, 1, 3, 15, 103, 888, 9147, 109150, 1477575, 22349316, ...];
D: [1, 1, 4, 26, 224, 2351, 28760, 399314, 6183132, 105455687, ...];
E: [1, 1, 5, 40, 415, 5145, 73121, 1162620, 20358145, 388334030, ...];
F: [1, 1, 6, 57, 692, 9906, 160656, 2884554, 56502264, 1195386975, ...];
G: [1, 1, 7, 77, 1071, 17395, 317303, 6357267, 137950303, 3211604480, ...];
H: [1, 1, 8, 100, 1568, 28498, 577808, 12788776, 304827080, 7753676623, ...];
I: [1, 1, 9, 126, 2199, 44226, 987021, 23928972, 621887265, 17173176273, ...]; ...
FIRST DERIVATIVES OF SERIES:
A' = B + x*C^2 + 2!*x^2*C*D^3 + 3!*x^3*C*D^2*E^4 + 4!*x^4*C*D^2*E^3*F^5 + 5!*x^5*C*D^2*E^3*F^4*G^6 + 6!*x^6*C*D^2*E^3*F^4*G^5*H^7 +...
B' = C^2 + 2!*x*C*D^3 + 3!*x^2*C*D^2*E^4 + 4!*x^3*C*D^2*E^3*F^5 + 5!*x^4*C*D^2*E^3*F^4*G^6 + 6!*x^5*C*D^2*E^3*F^4*G^5*H^7 +...
2!*C' = 2!*D^3 + 3!*x*D^2*E^4 + 4!*x^2*D^2*E^3*F^5 + 5!*x^3*D^2*E^3*F^4*G^6 + 6!*x^4*D^2*E^3*F^4*G^5*H^7 + 7!*x^5*D^2*E^3*F^4*G^5*H^6*I^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A);A=1+x+x*O(x^n);for(j=0,n-1,A=1+x*A^(n-j));polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Print Row r in Table (this Sequence is at r=1) */
    {a(n,r=1)=local(A=vector(3*n+2*r+2,i,1+x));
    for(m=1,2*n+r,for(j=0,n+r+m, A[n+r+m-j+1]=1+x*(A[n+r+m-j+2] +x^r*O(x^n))^(n+r+m-j+1) ););polcoeff(A[r],n)}
    for(n=0, 20, print1(a(n,1), ", "))

A234296 E.g.f.: 1 + Integral (1 + Integral (1 + Integral (1 + Integral (1 + ...)^16 dx)^8 dx)^4 dx)^2 dx.

Original entry on oeis.org

1, 1, 2, 10, 112, 2544, 110944, 9088160, 1395985024, 405640228736, 225812739686144, 243825339649539840, 515865727833142919168, 2154502537039937189822464, 17852312368540223401725132800, 294428418578798287467609655705600, 9684259826489059207872454620228222976
Offset: 0

Views

Author

Paul D. Hanna, Dec 24 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 10*x^3/3! + 112*x^4/4! + 2544*x^5/5! +...
such that
A(x) = 1 + Integral B(x)^2 dx,
B(x) = 1 + Integral C(x)^4 dx,
C(x) = 1 + Integral D(x)^8 dx,
D(x) = 1 + Integral E(x)^16 dx,
E(x) = 1 + Integral F(x)^32 dx,
F(x) = 1 + Integral G(x)^64 dx, ...
The coefficients in these series begin:
A: [1, 1, 2, 10, 112, 2544, 110944, 9088160, 1395985024, ...];
B: [1, 1, 4, 44, 1048, 48472, 4171008, 663109888, 196890206720, ...];
C: [1, 1, 8, 184, 9040, 845712, 144855616, 45401856704, ...];
D: [1, 1, 16, 752, 75040, 14126752, 4830297984, 3006883867264, ...];
E: [1, 1, 32, 3040, 611392, 230931264, 157795465984, ...];
F: [1, 1, 64, 12224, 4935808, 3734695552, 5101948036608, ...];
G: [1, 1, 128, 49024, 39665920, 60075785472, 164109335366656, ...];
H: [1, 1, 256, 196352, 318046720, 963787028992, 5265107899521024, ...]; ...
To illustrate a(n) = d^n/dx^n A(x) at x=0, take successive derivatives of A=A(x):
A' = B^2;
A'' = 2*B*C^4;
A''' = 2*C^8 + 8*B*C^3*D^8;
A'''' = 24*C^7*D^8 + 24*B*C^2*D^16 + 64*B*C^3*D^7*E^16; ...
and then evaluate at x=0, where 1=A(0)=B(0)=C(0)=D(0)=E(0)=...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1); for(k=0, n-1, A=1+intformal((A+x*O(x^n))^(2^(n-k)))); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
Showing 1-2 of 2 results.