A234308 a(n) = |{0 < k <= n/2: phi(k^2)*phi(n-k) - 1 is a Sophie Germain prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 1, 3, 1, 3, 3, 1, 3, 1, 2, 2, 3, 2, 1, 2, 1, 1, 1, 2, 2, 4, 3, 3, 1, 2, 5, 1, 2, 2, 4, 1, 2, 2, 3, 3, 3, 3, 3, 3, 7, 5, 1, 4, 4, 2, 3, 2, 3, 2, 1, 5, 1, 3, 4, 2, 2, 1, 2, 2, 4, 4, 4, 3, 5, 4, 3, 2, 6, 3, 6, 5, 1, 6, 2, 4, 3, 5, 3, 4, 5, 3, 4, 4, 3, 6, 3, 2, 6, 2, 3, 6, 1, 9, 3, 4, 7, 3
Offset: 1
Keywords
Examples
a(5) = 1 since phi(2^2)*phi(3) - 1 = 3 is a Sophie Germain prime. a(10) = 1 since phi(1^2)*phi(9) - 1 = 5 is a Sophie Germain prime. a(12) = 1 since phi(6^2)*phi(6) - 1 = 23 is a Sophie Germain prime. a(30) = 1 since phi(2^2)*phi(28) - 1 = 23 is a Sophie Germain prime. a(60) = 1 since phi(4^2)*phi(56) - 1 = 191 is a Sophie Germain prime. a(75) = 1 since phi(14^2)*phi(61) - 1 = 5039 is a Sophie Germain prime. a(95) = 1 since phi(30^2)*phi(65) - 1 = 11519 is a Sophie Germain prime. a(106) = 1 since phi(22^2)*phi(84) - 1 = 5279 is a Sophie Germain prime. a(110) = 1 since phi(9^2)*phi(101) - 1 = 5399 is a Sophie Germain prime. a(156) = 1 since phi(27^2)*phi(129) - 1 = 40823 is a Sophie Germain prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
SG[n_]:=PrimeQ[n]&&PrimeQ[2n+1] a[n_]:=Sum[If[SG[EulerPhi[k^2]*EulerPhi[n-k]-1],1,0],{k,1,n/2}] Table[a[n],{n,1,100}]
Comments